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Abstract
We study the problem of bicolouring random hypergraphs, both numerically
and analytically. We apply the zero-temperature cavity method to find
analytical results for the phase transitions (dynamic and static) in the one-step
replica symmetry breaking (1RSB) approximation. These points appear to be
in agreement with the results of the numerical algorithm. In the second part, we
implement and test the survey propagation algorithm for specific bicolouring
instances in the so-called HARD-SAT phase.

PACS numbers: 89.20.Ff, 75.10.Nr, 05.70.Fh

1. Introduction

The hypergraph bicolouring is one of the classic combinatorial optimization problems
belonging to the NP -complete class [1]. Its random version, bicolouring of random
hypergraphs, is a very interesting problem for the phase transitions it shows. Indeed, varying
the average connectivity of the random hypergraph, the model undergoes a transition [2] from
a phase in which all links can be properly coloured to a phase in which a sizable fraction of
links are violated. Around the transition point most difficult instances accumulate.

A graph is an ensemble of sites and links between them. In a hypergraph, the links connect
triplets of sites. Each site (or vertex) can be coloured in two ways, say black or white, so it
is natural to identify it with an Ising spin variable that can assume the value 1 or −1. The
link is considered to be satisfied if the three spins that share it are not all of the same colour.
In the following we will often refer to a link as a function node, as it is called, for example,
in the K-SAT problem [3]. The bicolouring problem consists in finding an assignment to all
spins such that all the links are satisfied. Consequently, a graph will be called colourable or
uncolourable.

We can write the Hamiltonian for the problem assuming that each unsatisfied link gives
a positive energy and zero otherwise. The total energy is proportional to the number of
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unsatisfied links: a colourable hypergraph will have a zero-energy ground state, while a
non-colourable one will have a positive-energy ground state.

The Hamiltonian for bicolouring a hypergraph G reads

H =
∑

{i,j,k}∈G

1 + σiσj + σiσk + σjσk

2
(1)

where σi = ±1 are Ising variables (corresponding to the two available colours) and the sum
runs over all the hyperedges of G. Note that a factor of 2 has been introduced for computational
convenience4.

Each term in the above sum is equal to 2 if and only if all the spins in the same interaction
are parallel, that is if all the vertices connected by a hyperedge have the same colour. The
Hamiltonian in equation (1) thus counts twice the number of badly coloured hyperedges.
Perfect colourations correspond to zero-energy configurations.

In the present work we focus on colourability of random hypergraphs with N vertices and
M hyperedges, varying the relevant parameter α = M

N
. In a typical random hypergraph the

connectivity of a spin (i.e. the degree of a vertex) is a random variable distributed according
to a Poissonian of mean 3α.

Analogous to random K-SAT [3], random K-XORSAT [4] and Q-colouring of random
graphs [5], the random hypergraph bicolouring is expected to undergo two phase transitions
increasing α. The first one is called ‘dynamical transition’ and is located at αd where solutions
to the problem (perfect colourations) undergo a clustering phenomenon. At this point the
complexity �, which counts the number of clusters of solutions, becomes nonzero. We recall
that if N (E) is the number of states at energy E the complexity is defined by the relation
N (E) = exp N�(α,E/N), and so it is a function of α and the energy density. In the region
where the complexity becomes positive, on top of a large number of ground states there
appear an even larger number of metastable states: the latter may trap and slow down linear-
time colouring algorithms and local search randomized methods [6]. At present all known
linear-time colouring algorithms stop converging for α values well below αd .

The second transition takes place at αc, where the ground-state energy becomes positive:
for α < αc most of the hypergraphs are colourable, while for α > αc most of them are
not. This transition is formally equivalent to the so-called SAT/UNSAT transition of K-SAT
[3, 7] and K-XORSAT [4], and we will refer to it with this name, although it is also known
as ‘COL/UNCOL’ transition in the computer science literature.

Known results on the SAT/UNSAT transition are only upper and lower bounds. The
best upper bound for αc, found with rigorous calculation, is 2.409 [8]. The best lower bound
is 3/2 [9]. In [10] the more general problem of bicolouring random hypergraphs with p-
spin hyperlinks is analysed. However for the p = 3 case the bounds are worse than those
we mentioned above. Recent rigorous results on random spin models and random K-SAT
(K even) [11, 12] have shown that the one-step replica symmetry breaking (1RSB) results
provide rigorous upper bounds to the phase transition point and we expect the same to be true
in our case.

2. Numerical results

We wrote a recursive Davis–Putnam algorithm [13] to colour random finite-size hypergraph in
order to localize the point αc, which will be calculated analytically in the next sections. Here
we present the numerical results, whose uncertainties are very small, thanks to the average
of a large number of disorder realizations. In figure 1 (left) we show that the energy curves
4 Local fields will turn out to be integer valued rather than fractional.
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Figure 1. Left: average extensive energy for sizes N = 20, 30, 40, 50. The crossing point roughly
localizes the SAT/UNSAT transition. Right: average extensive energy as a function of the rescaled
variable (α − αc)N

1/2. Data are represented with standard deviations.
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Figure 2. Fraction of colourable hypergraphs at N = 20, 30, 40, 50. The finite-size corrections
are in this case larger and the crossing point is less clearly localized.

for different N cross at αc. Indeed for α < αc, limN→∞ E = 0 because all hypergraphs are
colourable, while for α > αc,E ∝ N and diverges for N → ∞. From figure 1 we estimate
αc � 2.1. All the curves can be nicely collapsed when plotted versus (α−αc)N

1/2, see figure 1
(right).

A second estimate of αc can be obtained from the curves of the probability of being
colourable as a function of α (see figure 2). However, here the crossing point is less clear
because of larger finite-size corrections.

3. The cavity replica symmetric solution

3.1. Self-consistency equations

We now study the bicolouring problem with the cavity method at zero temperature [14, 15].
The simplest form of the zero-temperature cavity method is the replica symmetric (RS)
approximation, in which we suppose the system to have a single state. The basic hypothesis
of the cavity method is the lack of correlation between two randomly chosen spins, because of
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the local tree structure of the hypergraph. Thanks to these vanishing correlations, the energy
of the system for fixed σ0 can be written as a function of the cavity fields hj and gj on the 2k

neighbours of σ0 [15]:

E(σ0) = E0 −
k∑

j=1

ŵ(gj , hj ) − σ0

k∑
j=1

û(gj , hj ). (2)

In the case of hypergraph bicolouring the functions û and ŵ are given by{
û(h2, h3) = θ(−h2)θ(−h3) − θ(h2)θ(h3)

ŵ(h2, h3) = |h2| + |h3| − |u(h2, h3)| (3)

where θ(x) = 1 if x > 0 and θ(x) = 0 otherwise. The û are integers and can assume the
value 0, 1 or −1. Note that ŵ = ∑ |h| − |u| is a general relation for models with Ising-type
variables.

In the thermodynamic limit, we can assume the probability distributions of cavity fields h
and cavity biases u to have well-defined limits, and write for them self-consistency equations:{

Q(u) = ∫
dP(h1) dP(h2)δ(u − û(h1, h2))

P (h) = ∑∞
k=0 f3α(k)

∫
dQ(u1) · · · dQ(uk)δ

(
h −∑k

i=1 ui

) (4)

with

f3α(k) = (3α)k

k!
e−3α.

As expected, these equations coincide with those obtained from a replica calculation in [16].
Exploiting system symmetries one can always write

Q(u) = c0δ(u) +
1 − c0

2
[δ(u + 1) + δ(u − 1)]. (5)

Analogously, the distribution of cavity fields can be written as P(h) = ∑∞
i=−∞ piδ(h − i),

where the coefficients pi are symmetric, i.e. pi = p−i . The self-consistency equations can
then be written in terms of p0 and c0 as{

p0 = e−3α(1−c0)I0(3α(1 − c0))

c0 = 1 − (1−p0)
2

2

(6)

where I0(x) is the zero-order modified Bessel function. c0 is the order parameter of the system
and it satisfies the self-consistency equation

1 −
√

2(1 − c0) = e−3α(1−c0)I0(3α(1 − c0)). (7)

For any α value a ‘paramagnetic’ solution c0 = 1 exists, for which all the cavity fields are
zero. For α > αRS = 2.3336, there also exists a non-trivial ‘glassy’ solution with c0 < 1.

3.2. Energy density

We now compute the RS energy density, following the notation already used in [15]. We must
compute E(α) = �E1 − 2α�E3 where

�E3 =
∫

dP(h1) dP(h2) dP(h3)

[
min

σ1,σ2,σ3

(
1 + σ1σ2 + σ2σ3 + σ1σ3

2

− h1σ1 − h2σ2 − h3σ3

)
+ |h1| + |h2| + |h3|)

]

= 2
∫

dP(h1) dP(h2) dP(h3) θ(h1h2)θ(h2h3) = 1

2
(1 − p0)

3 =
√

2(1 − c0)
3
2 (8)
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�E1 =
∞∑

k=0

f3α(k)

∫
dQ(u1) · · · dQ(uk)

(
k∑

i=1

|ui | −
∣∣∣∣∣

k∑
i=1

ui

∣∣∣∣∣
)

= 3α(1 − c0) − 2 e−3α(1−c0)

∞∑
r=1

rIr(3α(1 − c0)). (9)

If we introduce the parameter λ = 3α(1 − c0) which satisfies the equivalent of
equation (7), the total RS energy density can be written as follows:

E = λ − 2 e−λ
∑

r

rIr (λ) − 2

3
λ(1 − e−λI0(λ)). (10)

Expression (10) seems to be the same for the different models with Ising variables (such as
p-spin [17], K-SAT [18], etc), the difference being only in the self-consistency equation for
λ, where α is multiplied by a different constant. For example, the αRS value for the present
bicolouring model is twice the value it takes in the three-spin model [17].

3.3. RS phase diagram

If we plot the energy (10) versus α we see that the energy of the non-trivial solution is negative
for α < 2.5906. In the region 2.3336 < α < 2.5906 the RS solution is therefore non-
physical, because the energy density of this problem must be positive by definition. In the RS
approximation we have found a paramagnetic phase for α < 2.3336 and a glassy phase for
α > 2.5906. This prediction is not correct, both quantitatively and qualitatively. The values
of α where the transitions appear are not in agreement with numerical simulations, and there
is a non-physical region.

3.4. Instability of evanescent field in the paramagnetic region

Before going to the 1RSB approximation, let us concentrate in this section on the RS
paramagnetic region α < 2.3336, in order to analyse the distribution of the so-called evanescent
fields [19]. In the paramagnetic phase at zero temperature all the cavity fields hi are null, but
considering the first-order correction in temperature one can write hi = T h′

i .
In terms of expectation values of spin variables, an evanescent field is the only one that

can give a finite magnetization in the zero-temperature limit: m = tanh(βh) → tanh(h′). In
contrast, in the ‘strictly’ zero-temperature formalism that we use to study ground state energy,
variables are either frozen, |m| = 1, or paramagnetic, m = 0, and we disregard any detailed
information concerning the fluctuations of the local magnetizations of the unfrozen variables.
The global probability distribution of the local magnetizations could in principle be non-trivial,
with some variable polarized (yet never frozen) in some preferential direction.

There are two equivalent ways of obtaining such information on the distribution
of magnetizations. The first consists in writing the iterative cavity equations for such
magnetizations and then taking the average over the underlying random hypergraph. The
second simply consists in computing the RS cavity equations at finite temperature assuming
appropriate scaling of the cavity fields. Taking hi = T h′

i with h′
i finite leads, in the β → ∞

limit, to a distribution of evanescent fields which may describe non-trivial expectations for the
spins.

Following the same steps which brought us to the RS self-consistency equations (4), we
can write analogously the self-consistency equations for the distributions of h′

i = βhi and



11042 T Castellani et al

u′
i = βui in the β → ∞ limit. These equations look identical to those in equations (4), the

only difference being the definition of the function û(h1, h2), which now reads

û′(h′
1, h

′
2) = tanh(h′

1) + tanh(h′
2)

tanh(h′
1) tanh(h′

2) − 3
. (11)

For very low α the only solution to the self-consistency equations is P(h′) = δ(h′). At
variance with respect to other problems such as for instance 3-SAT [18] in which the low α

phase is highly non-trivial, the bicolouring problem is simple. As happens in the Q-colouring
[5] and in the three-spin problems [4, 17], the very low α phase is a genuine paramagnet, with
local fields concentrated around zero even at the first order in temperature.

However, the solutions P(h′) = δ(h′) and Q(u′) = δ(u′) may become unstable at a
certain value of α, which we call αs . In order to study the stability of this solution (in which
local fields are uncorrelated independent of the local structure of the underlying hypergraph)
it is enough to give an infinitesimal width to P(h′) and check whether it increases or decreases
under the iteration of equations (4). For very small values of h′

i one can linearize the function
û′(h′

1, h
′
2) � −(h′

1 + h′
2)/3 and obtain very simple relations among the variances of P(h′) and

Q(u′) at two consecutive iterations (n and n + 1):

〈(u′)2〉n+1 = 2
9 〈(h′)2〉n (12)

〈(h′)2〉n+1 = 3α〈(u′)2〉n. (13)

For α < αs = 3/2 the variances do not increase under iteration of the RS equations and
the system is in a truly paramagnetic phase with all the magnetization identically zero.

For α > αs , the presence of a broad distribution of first-order corrections h′ suggests
the presence of a full RSB spin-glass phase at finite temperature, produced by a ‘replicon’
instability at αs . The finite-temperature phase transition at αs corresponds at T = 0 to the
onset of a non-trivial organization of ground states, with non-trivial magnetizations (unfrozen
RSB scenario). We incidentally note that the value of αs coincides with the best lower bound
available for αc.

However, as soon as the dynamical transition is reached at αd � 1.915 (see the following
section), the system loses memory of the unfrozen RSB phase. The non-evanescent fields,
h = O(1), are the only ones relevant in determining the ground state energy. At the level of
non-vanishing fields, at αd we have a transition from RS to 1RSB. At this point, the analytically
disconnected solution with vanishing fields disappears. The presence of full RSB is somehow
accidental and we expect higher number of colours to disappear completely (as happens in
graph colouring [5]).

4. The cavity 1RSB solution

4.1. Self-consistency equations: the distribution ρ(η)

In the previous section we have seen that the RS approximation produces a wrong solution.
Here we study the system with a better approximation, the so-called one-step replica symmetry
breaking.

In this approximation the scenario is a bit more complex: at αd (<αc) there is a clustering
phenomenon so that the computation made in the RS case is only valid within each state
(cluster). The crossing between the energy of two states must be also considered, for which
we use the ‘reweighting parameter’ µ as in [15].
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The 1RSB order parameter is a distribution of distributions, whose self-consistency
equations are as follows:

Q[Q] =
∫

DP[P1] DP[P2] δ(F)

[
Q(u) −

∫
dP1(h1) dP2(h2) δ(u − û(h1, h2))

]
(14)

P[P ] =
∞∑

k=0

f3α(k)

∫ k∏
i=1

DQ[Qi]

× δ(F)

[
P(h) − 1

Ak

∫ k∏
i=1

dQi(ui) e−µ(
∑ |u|−|∑ u|)δ

(
h −

k∑
i=1

ui

)]
(15)

with δ(F) being a functional delta and Ak normalization coefficients.
Thanks to the system symmetries, the most general form for Q(u) is given by

Q(u) = ηδ(u) +
1 − η

2
[δ(u + 1) + δ(u − 1)] (16)

which is symmetric under u ↔ −u and with u ∈ {−1, 0, 1}. The heterogeneity of the random
hypergraphs is now reflected in the very different values η may take: for example, isolated
plaquettes certainly have η = 1. Let us call ρ(η) the probability distribution function of η.
The problem will be now studied in terms of ρ(η), which completely determines the order
parameter Q[Q].

4.2. µ → ∞ limit

Self-consistency equations (14) and (15) can be written as a single self-consistency equation
for the distribution ρ(η). In the µ → ∞ limit it reads

ρ(η) =
∞∑

k=0

f3α(k)

∞∑
k′=0

f3α(k′)
∫ k∏

i=1

dρ(ηi)

k′∏
j=1

dρ(η′
j )

× δ

[
η − 1 +

1

2

(
1 −

∏k
i=1 ηi

Ak

)(
1 −

∏k′
j=1 η′

j

Ak′

)]
(17)

with the normalization coefficients Ak = 2
∏k

i=1
1+ηi

2 −∏k
i=1 ηi . Equation (17) can be solved

by a population dynamics algorithm. Starting from a population of η randomly distributed in
[0, 1] we then iterate the following steps:

• take k elements and compute ηk and Ak , where k, is a Poissonian number;
• take k′ elements and compute ηk′

and Ak′ , where k′ also is a Poissonian number;
• compute a new η as

1 − 1

2

(
1 − ηk

Ak

)(
1 − ηk′

Ak′

)

and insert it in the population eliminating another random η.

The asymptotic distribution ρ(η) is plotted in figure 3 (left) for different values of α. For
α > αd � 1.915 the distribution has both a trivial contribution in 1 and a non-trivial one in
the

[
1
2 ; 1

]
region, while for α < αd it collapses into a single delta function in 1.

In figure 3 (right) we plot the average value of η versus α, by which we immediately
localize the dynamical phase transition at αd = 1.915. An identical curve has been calculated
analytically in the more tractable case of the p-spin model [4].
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4.3. Complexity

In the µ → ∞ limit the complexity is given by [15]

� = lim
µ→∞(−µ�) = lim

µ→∞

{
log Ak − 2α log

[
1 − 1

2
(1 − η)

(
1 − ηk

Ak

)]}
(18)

where the averages are taken with respect to the Poissonian distribution of k and with respect
to ρ(η).

The complexity curve is plotted in figure 4. We identify the critical point αc = 2.105,
which corresponds to the SAT/UNSAT transition, as the point where the complexity vanishes.

4.4. Energy density and 1RSB phase diagram

In order to evaluate free energy � we must generalize the computation for finite values of µ.
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The self-consistency equation for general µ is

ρ(η) =
∞∑

k=0

f3α(k)

∞∑
k′=0

f3α(k′)
∫ k∏

i=1

dρ(ηi)

k′∏
j=1

dρ(η′
j )δ

[
η − 1 +

1

2

(
1 − ak

Ak

)(
1 − ak′

Ak′

)]

(19)

where ak is the coefficient of the delta function in 0 of the distribution P (k)(h) computed by the
convolution of k biases u, and Ak is its normalization factor. To compute quickly the P (k)(h)

we can use a recursive relation:

P (k)(h) =
∫

dQk(uk) dP (k−1)(g)δ(h − g − uk) e−µ(|uk |+|g|−|g+uk |). (20)

The free energy is given by � = �1 − 2α�2 with

�1 = − 1

µ
log(Ak)

(21)

�2 = − 1

µ
log

(
1 − 1

2
(1 − η)

(
1 − ak

Ak

)
(1 − e−2µ)

)
.

For α > αc,� has a maximum at a finite value of µ, which means that the ground state has
positive energy. Otherwise for α < αc,� is always negative, converging towards zero for
µ → ∞, which corresponds to a zero-energy ground state.

The energy density is calculated as

E = ∂

∂µ
(µ�) = − 1

Ak

∂Ak

∂µ
+ 2α

(1 − η)
(
1 − ak

Ak

)
e−2µ

1 − 1
2 (1 − η)

(
1 − ak

Ak

)
(1 − e−2µ)

. (22)

As we did before, rather than computing the derivative of the Ak , we can write a recursive
equation for the probability distribution R(k)(h) ≡ ∂

∂µ
P (k)(h):

R(k)(h) =
∫

dQk(uk) dg[R(k−1)(g)

+ (|h| − |g| − |uk|)P (k−1)(g)]δ(h − g − uk) e−µ(|g|+|uk |−|h|). (23)

Including this calculation in the population dynamics algorithm provides directly the curve
E(µ) = ∂

∂µ
(µ�). The ground state energy is obtained as the point where E(µ) and �(µ)

coincide.
The ground state energy density is compared to the numerical results in figure 5. This

curve must be considered an N → ∞ limit of the finite N curves that we obtained numerically.
Another interesting curve that we can compute is the complexity versus the energy, which

we plot parametrically in µ using E(µ) and �(µ) (see figure 6). The curve � = µ(E − �)

has two branches: the lower one is the physical one and represents the true complexity5.
The last quantity we display in figure 4 is Eth versus α, which is simply the maximum of

E(µ).
Summarizing the 1RSB results we get the following scenario.
There is a ‘paramagnetic’ phase for α < αd = 1.915, where there are no metastable states

and we conjecture the existence of linear algorithms for colouring the generic hypergraph.
The cavity fields are zero, so the spins are not forced to be black or white. In the so-called
HARD-SAT region αd < α < αc = 2.105 the generic hypergraph is still colourable, but the

5 For the unphysical one there is not still a precise interpretation [15], however it does not seem to have any physical
meaning.
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physical lower branch at the threshold energy Eth = 0.062 the complexity is maximal, while it
becomes zero at the ground state energy.

presence of many states makes the colouring procedure very difficult. In each ground state
there is a core of spins for which there is a particular pattern of colouring: because of the
existence of an exponentially larger number of metastable states, it is very difficult for the local
search algorithm to colour the core in the right way. For α > αd the 1RSB approximation
becomes less valid when high energy states are considered [20]. Most likely, the curve Eth

would slightly change if a better approximation is used.
These 1RSB results are expected to be a very good approximation of the exact analytical

solution, as happens in the majority of similar combinatorial optimization problems. For the
p-spin model [17] an exact solution has been found that is identical to the 1RSB one [4, 21].

5. Single-sample analysis and the SP algorithm

An innovative and useful reformulation of the cavity equations has been proposed in [7]. The
self-consistency equations are used to study single random problem instances and allow us to
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Figure 7. Factor graph representation of an energy minimization problem.

get microscopic information about the behaviour of the single spins in the stable and metastable
states of given energy density. The method, called survey propagation (SP), is general and
provides the core ingredient of a new efficient algorithm [3, 7, 22] for finding ground states
within the glassy phase. Here we will apply and check SP for the bicolouring problem. This
problem is half-way between the random K-SAT problem and the random K-XORSAT (or
p-spin) problem. Since the SP algorithm does work for random K-SAT [7], but it does not
seem to work for random K-XORSAT, we believe that it is of primary importance to check its
performances on the random hypergraph bicolouring problem.

The iterative equations for the probability distributions of cavity fields that we have used
in the previous sections to find the phase diagram were implemented at the same time during
a population dynamics process and an averaging over the random realizations. However, the
equations can be easily iterated over specific realizations, that is avoiding the averaging step.
In such a formulation the order parameter becomes the full list of the cavity fields over the
entire graph. From the cavity fields one may determine the bias of each spin in all metastable
states of given energy density and this information can be used for algorithmic purposes.
The underlying hypothesis for the exactness of the single-sample formalism is the validity of
the so-called clustering condition within states: cavity fields should be uncorrelated within
states and we expect this to be approximatively true, thanks to the fact that the most numerous
loops in the graph have a length that diverges as log N .

In order to set up an appropriate formalism for the single-sample analysis, we resort to
the factor graph representation [23] of the bicolouring problem: variables are represented by
N circular ‘variable nodes’ labelled with letters i, j, k, . . . whereas links (which carry the
interaction energy) are represented by M square ‘function nodes’ labelled by a, b, c, . . . (see
figure 7). Function nodes have connectivity 3, variable nodes have a Poisson connectivity of
average 3α and the overall graph is bipartite. The energy function can be trivially written as
the sum over function nodes of their energies.

Following [7], we call ‘messages’ the û terms which represent the contribution to the
cavity fields coming from the different connected branches of the graph. In the message-
passing language (typical of error-correcting code algorithms [24]) one may describe the SP
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Figure 8. Iterative equations as message-passing procedure.

equations as follows. In the replica symmetric approximation, the messages arriving at a
node are added up and then sent to a function node. Next, the function node transforms
all input signals into a new message which is sent to the descendant variable node. At the
1RSB level, the messages along the links of the factor graph are u-surveys of usual messages
over the various possible states of the system at a given value of the energy (which is fixed
by the reweighting parameter µ). While the method is not restricted to zero temperature, at
T = 0 it assumes a particularly simple form because messages can take only few values, 3
in our case, and the u-surveys are given by the probabilities of these values. The u-surveys
are parametrized by two real numbers and the SP can be implemented easily. Each edge
a → j from a function node to a variable node j carries a u-survey Qa→j (u). The algorithm
finds these u-surveys and all the cavity fields Pi→a(h). Very schematically, the procedure
works as follows. All the u-surveys Qa→i (u) are initialized randomly. Next, function nodes
are selected sequentially at random and the u-surveys are updated according to the following
equations:

Pi→a(h) = Ci→a

∫
du1 · · · dukQb1→i (u1) · · · Qbk→i (uk)δ

×
(

h −
k∑

a=1

ua

)
exp

(
µ

(∣∣∣∣∣
k∑

a=1

ua

∣∣∣∣∣−
k∑

a=1

|ua|
))

(24)

Qa→i (u) = Ca→i

∫
dg dhPj→a(g)P→a(h)δ(u − û(g, h)) (25)

where the function û(g, h) is that defined in equation (3). In the above expressions, Ci→a, Ca→i

are normalization constants and the labels bi identify the k neighbouring function nodes
different from a connected to site the variable node i (see figure 8).

Parametrizing the u-surveys as

Qa→i (u) = (
1 − η+

a→i − η−
a→i

)
δ(u) + η+

a→iδ(u − 1) + η−
a→iδ(u + 1) (26)

the above set of equations (24), (25) defines a nonlinear map over the η.6

6 In the algorithmic formalism we need a more general parametrization of surveys with respect to that used in the
first sections. As we shall see, along the decimation process the symmetries of surveys are lost.
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Figure 9. Free energy φ(µ) for different samples of size N = 10 000 and α = 2.05, 2.1, 2.2.

The process is iterated until convergence is reached and finally the stable set of u-surveys
is used to compute the N local field {Pi(Hi)}) distributions and the free energy �(µ). We have

Pi(H) = Ci

∫ ∏
a∈V (i)

duaQa→i (ua)δ


H −

∑
a∈V (i)

ua


 exp


µ

(∣∣∣∣∣
∑

a∈V (i)

ua

∣∣∣∣∣−
∑

a∈V (i)

|ua|
)

(27)

with Ci being the normalization constant and V (i) the set of function nodes connected to
variable i. The free energy reads

�(µ) = 1

N

(
M∑

a=1

�f
a (µ) −

N∑
i=1

�v
i (µ)(ni − 1)

)
(28)

where

�f
a (µ) = − 1

µ
log



∫ ∏

i∈V (a)


 ∏

b∈V (i)−a

Qb→i (ub→i ) dub→i




× exp


−µ min

{σi ,i∈V (a)}


Ea −

∑
i∈V (a)


 ∑

b∈V (i)−a

ub→i


 σi +

∑
b∈V (i)−a

|ub→i |







�v
i (µ) = − 1

µ
log



∫ ∏

a∈V (i)

dua Qa→i (ua) exp


µ



∣∣∣∣∣
∑

a∈V (i)

ua

∣∣∣∣∣−
∑

a∈V (i)

|ua|







= − 1

µ
log(Ci).

(29)

In the above expressions, V (a) identifies the set of variable nodes connected to the function
node a and Ea is its energy (i.e. the link energy).

The complexity �(µ) = ∂�(µ)/∂(1/µ) and the energy density ε(µ) = ∂(µ�(µ))/∂µ

of states can also be estimated over single instances. Figure 9 shows the free energy φ(µ) of
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Figure 10. Ground state energy and threshold energy for a single sample of size N = 10 000 at
different connectivities.

single graphs with N = 10 000 vertices as a function of µ for different values of the average
connectivity α. Figure 10 shows the ground state energies and threshold energies for single
instances at different α. Similar data can be produced for the complexity. The agreement with
the averaged calculations of the previous sections is indeed remarkable already for relatively
small values of N (as should be expected from the self-averaging property of the free energy).

Once the information concerning the effective local fields acting on the single spin
variables becomes available a decimation procedure for finding ground states can be easily
implemented. We have done one such implementation for the µ → ∞ case, with the scope of
finding perfect colourings in the dynamical region just below αc. In this regime, the expression
of the nonlinear map simplifies considerably. From equations (24), (25) we find

η+
a→i =

∏
j∈V (a)\i

[
�−

j→a

�0
j→a + �−

j→a + �0
j→a

]
(30)

η−
a→i =

∏
j∈V (a)\i

[
�+

j→a

�+
j→a + �−

j→a + �0
j→a

]

where

�+
j→a =

∏
b∈V (j)\a

(1 − η−
b→i ) −

∏
b∈V (j)\a

η0
b→i

�−
j→a =

∏
b∈V (j)\a

(
1 − η+

b→i

)−
∏

b∈V (j)\a
η0

b→i (31)

�0
j→a =

∏
b∈V (j)\a

η0
b→i .

The value of η0
a→j can be calculated by normalization. Other relevant quantities such as the

biases of variables and the complexity also acquire a simple form. Upon defining the bias
W

±,0
i of a variable as the probability of picking up a cluster of ground states at random and

finding that variable frozen in some preferential direction, that is W +
i ≡ Prob(Hi > 0),W 0

i ≡
Prob(Hi = 0),W−

i ≡ Prob(Hi < 0), we have
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W +
i = �̂+

i

�̂+
i + �̂−

i + �̂0
i

W−
i = �̂−

i

�̂+
i + �̂−

i + �̂0
i

(32)

W 0
i = 1 − W

(+)
i − W

(−)
i

with

�̂+
i =

∏
a∈V (i)

(1 − η−
a→i ) −

∏
a

η0
a→i

�̂−
i =

∏
a∈V (i)

(
1 − η+

a→i

)−
∏
a

η0
a→i (33)

�̂0
i =

∏
a∈V (i)

η0
a→i

For the complexity we have

� = 1

N

(
M∑

a=1

�a −
N∑

i=1

(ni − 1)�i

)
(34)

where

�a = log


 ∏

j∈V (a)

(
�+

j→a + �−
j→a + �0

j→a

)−
∏

j∈V (a)

�+
j→a −

∏
j∈V (a)

�−
j→a


 (35)

�i = log
[
�̂+

i + �̂−
i + �̂0

i

]
. (36)

With the list of the biases in hand, the following simple decimation procedure for finding
ground state configurations can been implemented:

1. {η} ← random
2. SP

(a) Iterate equations (24), (25) until a fixed {η∗} point is reached
3. Compute the biasesW +

i = Prob(Hi > 0),W 0
i = Prob(Hi = 0), W−

i = Prob(Hi < 0),

following equation (27)
4. For Bi = W +

i − W−
i , choose i such that |Bi | is maximum

5. IF |Bi | < ε for all i then STOP (paramagnetic state) and output the reduced
sub-problem

6. FIX σi = 1 if Bi > 0, σi = −1 otherwise
7. GOTO 2

One should note that along the decimation procedure some of the variables are fixed and
therefore new types of links appear. The corresponding new function nodes will have an
energy which is inherited by the three-body interaction by fixing one of the variables. Once
decimation has started, the bicolouring problem becomes a mixture of graph and hypergraph
bicolouring.

The behaviour of the algorithm on sufficiently large (n> 103) random bicolouring
instances is as follows:
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• For low α (α < αd), the variables turn out to be all paramagnetic (zero bias).
• In the dynamical region the biases are non-trivial and the decimation procedure fixes many

variables leading to sub-problems which are paramagnetic and easily solved by a greedy
heuristic. Very close to αc the decimation procedure may fail in finding solutions in the
first run. In this region the algorithm can be improved in many ways, e.g., by a random
restart or a backtrack or a different decimation strategy. In any case we cannot exclude
the existence of a threshold close to αc where the decimation procedure stops converging.

For small N the structural ‘rare events’ of the random hypergraph, such as links sharing
more than one variable or other types of short loops, require an appropriate (in principle simple)
modification of the SP iterations [24]. More in general, the presence of loops of different
length scales may introduce correlations which may require further non-trivial generalization
of the whole SP procedure.

6. Conclusions

In this work we have given a very detailed description of the random hypergraph bicolouring
problem, both in the average case and in single samples.

After having defined the statistical model corresponding to this problem, we have applied
the cavity method to solve it: results in the RS and 1RSB approximations have been presented.

Increasing the connectivity α the model undergoes several phase transitions, which can
be summarized as follows:

• For α < αs the model is in a genuine paramagnetic phase; all the magnetizations are
identically null.

• At α = αs a ‘replicon’ instability takes place, which manifests at finite temperature with
the onset of spin-glass order (full RSB).

• For αs < α < αd the presence of a full RSB phase at finite temperatures is reflected in
the ground states by finite values for the spin magnetizations.

• At α = αd a clustering transition takes place among the ground states. They split in an
exponentially large number of clusters. Within each cluster a finite fraction of variables
are completely frozen (backbone).

• For αd < α < αc the model has a nonzero complexity and an exponentially large number
of metastable states, which may block local search algorithms. Although there are very
strong correlations among variables the ground state energy is still zero and the problem
is colourable on average.

• At α = αc the COL/UNCOL phase transition takes place.
• For α > αc the ground state energy is positive and the problem cannot be coloured on

average.

In the second part of this work we have applied the survey propagation algorithm to
problem instances taken from the HARD-COL region (αd < α < αc), finding in polynomial
time solutions to the problem. So we have verified that the SP algorithm works properly also
for this model, which is more difficult than the 3-SAT problem [7]. Indeed this model, at
variance with K-SAT, has no local biases which could in principle be exploited by a smart
algorithm.

Next steps in this line of research will be to consider random difficult combinatorial
problems endowed with some non-trivial local structure of the underlying graph. This
constitutes a conceptual challenge that will bring the algorithmic and analytical tools developed
for sparse graphs closer to what is found in the real-world version of the same class of
models [25].
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